Get full access to all Data Science, Machine Learning, and AI courses built for finance professionals.
One-time payment - Lifetime access
Or create a free account to start
A step-by-step guide covering Python, SQL, analytics, and finance applications.
Or create a free account to access more
Get full access to all Data Science, Machine Learning, and AI courses built for finance professionals.
One-time payment - Lifetime access
Or create a free account to start
A step-by-step guide covering Python, SQL, analytics, and finance applications.
Or create a free account to access more
Backtesting is one of the most important steps in building a successful quantitative trading strategy. It is in fact a key step that differentiates algorithmic trading from discretionary trading. Quants use their computational finance and programming skills to build complex trading strategies. However, before these strategies are executed in the live market, they are tested using historical data. Basically, the traders will feed the historical data into these algorithmic trading programs which will tell them how well their strategies performed on this historical data. This refers to backtesting and can help traders in finding flaws in their trading strategies and improvise them.

It’s also important to note that backtesting is different from simulation because backtesting relies on historical data which is real, unlike the simulated data. Also, the goal of backtesting here is to work and build a profitable trading strategy compared to stress-testing which may rely on simulated data.
It is important to backtest a trading strategy whether you are building a strategy from scratch or whether you are trying to implement a strategy you got from someone. In both cases, you want to be sure that the strategy works without risking real capital. You also want to be sure that you understand the strategy well and understand the risks involved. You may also want to improve the performance of the strategy by backtesting it and making small changes based on your learning from the backtests. This, however, will depend on your own intuition and knowledge about the market. Generally, when you obtain a new trading strategy such as from an academic paper, it will also have a stated performance. Using backtesting you can also ensure whether those stated goals are met or not, and if not met, what could be the reasons. The backtesting process also helps you get to know every small detail of the strategy, such as when to enter and exit, how much capital, how to prepare data, and so on. This kind of attention to every detail of the strategy separates a profitable one from a losing one.
Backtesting has its own limitations. We know that history is not necessarily a good indicator of the future. Lots of things can change as time passes. The market dynamics may change, the government regulations may change which may leave the strategy useless. Similarly, the economic conditions may differ vastly compared to the past. However, with backtesting, our goal is to increase the likelihood that future performance will be as close to the backtested performance as possible. This can be done by following the best practices such as avoiding backtesting pitfalls to avoid inflation of backtesting results, keeping your strategy simple and following a solid underlying trend, not to overfit the model, conducting out-of-sample testing, and other practices.
Backtesting a trading strategy is a lot of hard work and a time-consuming process. As an active trader, you may come across new strategies every day. So, even before putting in any effort into a strategy it is possible to do a basic analysis of the strategy to understand whether the strategy is even worth backtesting. Let’s look at some of these methods of investigating a strategy.
In backtesting, we always want to avoid a false positive. It is much better if a strategy performs poorly in a backtest than to exhibit false performance.